
projectpart2_1155174356.md 12/2/2022

1 / 19

ENGG1110 Course Project Report

Chan Cheuk Ka (1155174356)

projectpart2_1155174356.md 12/2/2022

2 / 19

Table of Contents
Feature A: Computer Strategy

Game initialisation
Difficulty choice
Player number choice
Game tree progress tracker

AI
Game tree
Move enumeration
Depth-first search
Game termination
Minimax
Memoisation

Index
Storage format
Symmetry

Gameplay
Move randomisation
Respect of difficulty
Move notification

Advantages
Feature B: Invalid User Input Checking

Game initialisation
Game mode choice
Difficulty choice
Player number choice

Gameplay
Validity check rationale

Documentary

projectpart2_1155174356.md 12/2/2022

3 / 19

Feature A: Computer Strategy
A single-player mode is implemented where the user can play against a strategic computer opponent.

Game initialisation
Due to having a choice between single- and multi-player, the program now has to go through an initialisation
phase.

Difficulty choice

The user is given the freedom to choose the AI's difficulty level. The intricacies of difficulty level will be
discussed more below.

Enter player count: 1
Enter desired difficulty setting (0-100, higher is harder): 60
...

Player number choice

The user is also given a choice to play as either player.

Enter player count: 1
Enter desired difficulty setting (0-100, higher is harder): 60
Enter which player you will play as (Player 1 will go first): 2
!!! Computer is player 1 - You are player 2 !!!
...

Notice that a notification is also displayed to denote who is playing as which player number.

Game tree progress tracker

The game tree search takes a noticeable amount of time to complete. Hence, a progress tracker is
implemented to inform the user.

Enter player count: 1
Enter desired difficulty setting (0-100, higher is harder): 60
Enter which player you will play as (Player 1 will go first): 2
!!! Computer is player 1 - You are player 2 !!!
Doing game tree search: 2426721/3516986 (69%)

projectpart2_1155174356.md 12/2/2022

4 / 19

The gameplay can truly start after the game tree search has been completed.

...
Doing game-tree search: 3516986/3516986 (100%)
Done.
Player 1's turn ###
Unused numbers:
1 2 3 4 5 6 7 8 9
...

AI
This program implemented a strategic AI designed to play theoretically perfectly. The AI does a game tree
search in a depth-first search manner. During the search, it determines whether a board is advantageous to
which player, then proceeds to find the best move in the current board position.

Game tree

A game tree is a tree of possible moves that both players can make in a given board position. For each move
made, a new board position would be attained, with its tree of possible moves.

etc...

Player 2's Turn

Player 1's Turn
- - -
- - -
- - -

- - -
- - -
1 2 -

- - -
- - -
1 - 2

...

...

- - -
4 5 6
1 2 3

P2 Win

... ...

- - 9
- - 4
1 3 2

P1 Win

...

... ...

- - -
- - -
1 - -

- - -
- - -
- 1 -

... - - 9
- - -
- - -

... ...

5 7 9
6 1 4
2 8 3

Draw

...

...

projectpart2_1155174356.md 12/2/2022

5 / 19

Move enumeration

Moves are enumerated for each board position to generate a list of valid moves.

The source code segment responsible is as follows:

224 char enumMoves(
225 char moves[45][2] /*by reference*/,
226 char board[3][3],
227 char nums[2][5],
228 char isPlayer1Turn //? bool
229) { //? add to moves and return moveCount
230 char moveCount = 0;
231
232 for (char pos = 0; pos < 9; pos++) {
233 if (board[pos / 3][pos % 3]) {
234 continue;
235 }
236
237 for (char i = 0; i < 5; i++) {
238 char num = nums[1 - isPlayer1Turn][i];
239 if (num == 0) {
240 continue;
241 }
242 moves[moveCount][0] = pos;
243 moves[moveCount][1] = num;
244 moveCount++;
245 }
246 }
247
248 return moveCount;
249 }

224 char enumMoves(
225 char moves[45][2] /*by reference*/,
226 char board[3][3],
227 char nums[2][5],
228 char isPlayer1Turn //? bool
229) { //? add to moves and return moveCount
230 char moveCount = 0;
231
232 for (char pos = 0; pos < 9; pos++) {
233 if (board[pos / 3][pos % 3]) {
234 continue;
235 }
236
237 for (char i = 0; i < 5; i++) {
238 char num = nums[1 - isPlayer1Turn][i];
239 if (num == 0) {
240 continue;
241 }
242 moves[moveCount][0] = pos;
243 moves[moveCount][1] = num;
244 moveCount++;
245 }
246 }
247
248 return moveCount;
249 }

224 char enumMoves(
225 char moves[45][2] /*by reference*/,
226 char board[3][3],
227 char nums[2][5],
228 char isPlayer1Turn //? bool
229) { //? add to moves and return moveCount
230 char moveCount = 0;
231
232 for (char pos = 0; pos < 9; pos++) {
233 if (board[pos / 3][pos % 3]) {
234 continue;
235 }
236
237 for (char i = 0; i < 5; i++) {
238 char num = nums[1 - isPlayer1Turn][i];
239 if (num == 0) {
240 continue;
241 }
242 moves[moveCount][0] = pos;
243 moves[moveCount][1] = num;
244 moveCount++;
245 }
246 }
247
248 return moveCount;
249 }

224 char enumMoves(
225 char moves[45][2] /*by reference*/,
226 char board[3][3],
227 char nums[2][5],
228 char isPlayer1Turn //? bool
229) { //? add to moves and return moveCount
230 char moveCount = 0;
231
232 for (char pos = 0; pos < 9; pos++) {
233 if (board[pos / 3][pos % 3]) {
234 continue;
235 }
236
237 for (char i = 0; i < 5; i++) {
238 char num = nums[1 - isPlayer1Turn][i];
239 if (num == 0) {
240 continue;
241 }
242 moves[moveCount][0] = pos;
243 moves[moveCount][1] = num;
244 moveCount++;
245 }
246 }
247
248 return moveCount;
249 }

Each board tile is iterated through to first check if they are empty, then all the remaining unused
numbers are pushed to a valid move list.

projectpart2_1155174356.md 12/2/2022

6 / 19

Depth-first search

A new board position is then generated and assessed for each move. This process is done recursively.

The source code segment responsible is as follows:

276 // add to moves and return moveCount
277 char moves[45][2] = {0}; //? [position, number]
278 char moveCount = enumMoves(moves, board, nums, isPlayer1Turn);
279 //
280 char moveScores[45] = {-10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10

, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10
, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10
, -10};

281 //? -10: uninitiliased
282 char moveScoresLength = 0;
283 //
284 for (char i = 0; i < 45; i++) { //? moves.forEach
285 char movePosition = moves[i][0];
286 char moveNumber = moves[i][1];
287 if (!moveNumber) {
288 continue;
289 }
290 //
291 char newBoard[3][3]; // clone
292 for (char j = 0; j < 3; j++) {
293 newBoard[j][0] = board[j][0];
294 newBoard[j][1] = board[j][1];
295 newBoard[j][2] = board[j][2];
296 }
297 char newNums[2][5]; // clone
298 for (char j = 0; j < 2; j++) {
299 newNums[j][0] = nums[j][0];
300 newNums[j][1] = nums[j][1];
301 newNums[j][2] = nums[j][2];
302 newNums[j][3] = nums[j][3];
303 newNums[j][4] = nums[j][4];
304 }
305 //
306 char newIsPlayer1Turn = !isPlayer1Turn;
307 newBoard[movePosition / 3][movePosition % 3] = moveNumber;
308
309 // remove moveNumber from newNums
310 for (char j = 0; j < 5; j++) {
311 if (newNums[1 - isPlayer1Turn][j] == moveNumber) {
312 newNums[1 - isPlayer1Turn][j] = 0;
313 break;
314 }
315 }
316
317 //
318 char treeScore = tree(pScore, newBoard, newNums, newIsPlayer1Turn, searched);
319 moveScores[moveScoresLength] = treeScore;
320 moveScoresLength++;

276 // add to moves and return moveCount
277 char moves[45][2] = {0}; //? [position, number]
278 char moveCount = enumMoves(moves, board, nums, isPlayer1Turn);
279 //
280 char moveScores[45] = {-10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10

, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10
, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10
, -10};

281 //? -10: uninitiliased
282 char moveScoresLength = 0;
283 //
284 for (char i = 0; i < 45; i++) { //? moves.forEach
285 char movePosition = moves[i][0];
286 char moveNumber = moves[i][1];
287 if (!moveNumber) {
288 continue;
289 }
290 //
291 char newBoard[3][3]; // clone
292 for (char j = 0; j < 3; j++) {
293 newBoard[j][0] = board[j][0];
294 newBoard[j][1] = board[j][1];
295 newBoard[j][2] = board[j][2];
296 }
297 char newNums[2][5]; // clone
298 for (char j = 0; j < 2; j++) {
299 newNums[j][0] = nums[j][0];
300 newNums[j][1] = nums[j][1];
301 newNums[j][2] = nums[j][2];
302 newNums[j][3] = nums[j][3];
303 newNums[j][4] = nums[j][4];
304 }
305 //
306 char newIsPlayer1Turn = !isPlayer1Turn;
307 newBoard[movePosition / 3][movePosition % 3] = moveNumber;
308
309 // remove moveNumber from newNums
310 for (char j = 0; j < 5; j++) {
311 if (newNums[1 - isPlayer1Turn][j] == moveNumber) {
312 newNums[1 - isPlayer1Turn][j] = 0;
313 break;
314 }
315 }
316
317 //
318 char treeScore = tree(pScore, newBoard, newNums, newIsPlayer1Turn, searched);
319 moveScores[moveScoresLength] = treeScore;
320 moveScoresLength++;

276 // add to moves and return moveCount
277 char moves[45][2] = {0}; //? [position, number]
278 char moveCount = enumMoves(moves, board, nums, isPlayer1Turn);
279 //
280 char moveScores[45] = {-10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10

, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10
, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10
, -10};

281 //? -10: uninitiliased
282 char moveScoresLength = 0;
283 //
284 for (char i = 0; i < 45; i++) { //? moves.forEach
285 char movePosition = moves[i][0];
286 char moveNumber = moves[i][1];
287 if (!moveNumber) {
288 continue;
289 }
290 //
291 char newBoard[3][3]; // clone
292 for (char j = 0; j < 3; j++) {
293 newBoard[j][0] = board[j][0];
294 newBoard[j][1] = board[j][1];
295 newBoard[j][2] = board[j][2];
296 }
297 char newNums[2][5]; // clone
298 for (char j = 0; j < 2; j++) {
299 newNums[j][0] = nums[j][0];
300 newNums[j][1] = nums[j][1];
301 newNums[j][2] = nums[j][2];
302 newNums[j][3] = nums[j][3];
303 newNums[j][4] = nums[j][4];
304 }
305 //
306 char newIsPlayer1Turn = !isPlayer1Turn;
307 newBoard[movePosition / 3][movePosition % 3] = moveNumber;
308
309 // remove moveNumber from newNums
310 for (char j = 0; j < 5; j++) {
311 if (newNums[1 - isPlayer1Turn][j] == moveNumber) {
312 newNums[1 - isPlayer1Turn][j] = 0;
313 break;
314 }
315 }
316
317 //
318 char treeScore = tree(pScore, newBoard, newNums, newIsPlayer1Turn, searched);
319 moveScores[moveScoresLength] = treeScore;
320 moveScoresLength++;

276 // add to moves and return moveCount
277 char moves[45][2] = {0}; //? [position, number]
278 char moveCount = enumMoves(moves, board, nums, isPlayer1Turn);
279 //
280 char moveScores[45] = {-10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10

, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10
, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10
, -10};

281 //? -10: uninitiliased
282 char moveScoresLength = 0;
283 //
284 for (char i = 0; i < 45; i++) { //? moves.forEach
285 char movePosition = moves[i][0];
286 char moveNumber = moves[i][1];
287 if (!moveNumber) {
288 continue;
289 }
290 //
291 char newBoard[3][3]; // clone
292 for (char j = 0; j < 3; j++) {
293 newBoard[j][0] = board[j][0];
294 newBoard[j][1] = board[j][1];
295 newBoard[j][2] = board[j][2];
296 }
297 char newNums[2][5]; // clone
298 for (char j = 0; j < 2; j++) {
299 newNums[j][0] = nums[j][0];
300 newNums[j][1] = nums[j][1];
301 newNums[j][2] = nums[j][2];
302 newNums[j][3] = nums[j][3];
303 newNums[j][4] = nums[j][4];
304 }
305 //
306 char newIsPlayer1Turn = !isPlayer1Turn;
307 newBoard[movePosition / 3][movePosition % 3] = moveNumber;
308
309 // remove moveNumber from newNums
310 for (char j = 0; j < 5; j++) {
311 if (newNums[1 - isPlayer1Turn][j] == moveNumber) {
312 newNums[1 - isPlayer1Turn][j] = 0;
313 break;
314 }
315 }
316
317 //
318 char treeScore = tree(pScore, newBoard, newNums, newIsPlayer1Turn, searched);
319 moveScores[moveScoresLength] = treeScore;
320 moveScoresLength++;

Using the move list given by enumMoves, each possible future board positions is simulated and iterated
through recursively via tree.

projectpart2_1155174356.md 12/2/2022

7 / 19

Game termination

If a board qualifies for game termination (win/lose/draw), a score is assigned to the board depending on the
termination mode: 1 denotes player 1 wins; -1 denotes player 2 wins; 0 denotes a draw.

etc...

Player 2's Turn

Player 1's Turn
- - -
- - -
- - -

- - -
- - -
1 2 -

- - -
- - -
1 - 2

...

...

- - -
4 5 6
1 2 3

P2 Win

... ...

- - 9
- - 4
1 3 2

P1 Win

...

... ...

- - -
- - -
1 - -

- - -
- - -
- 1 -

... - - 9
- - -
- - -

... ...

5 7 9
6 1 4
2 8 3

Draw

...

...

Score = -1 Score = 1

Score = 0

The source code segment responsible is as follows:

270 char finalScore = 0;
271 if (aiOnlyHasWinner(board)) {
272 finalScore = 1 - 2 * isPlayer1Turn;
273 } else if (aiOnlyIsFull(board)) {
274 finalScore = 0;
275 } else {

270 char finalScore = 0;
271 if (aiOnlyHasWinner(board)) {
272 finalScore = 1 - 2 * isPlayer1Turn;
273 } else if (aiOnlyIsFull(board)) {
274 finalScore = 0;
275 } else {

270 char finalScore = 0;
271 if (aiOnlyHasWinner(board)) {
272 finalScore = 1 - 2 * isPlayer1Turn;
273 } else if (aiOnlyIsFull(board)) {
274 finalScore = 0;
275 } else {

270 char finalScore = 0;
271 if (aiOnlyHasWinner(board)) {
272 finalScore = 1 - 2 * isPlayer1Turn;
273 } else if (aiOnlyIsFull(board)) {
274 finalScore = 0;
275 } else {

If a game termination condition is met, finalScore is set directly and the branch is terminated.
Notice that {1 - 2 * isPlayer1Turn} will give 1 or -1 depending on whose turn it was.

projectpart2_1155174356.md 12/2/2022

8 / 19

Minimax

Consider a branch and its children nodes. Recall that a higher score corresponds to a larger advantage for
player 1, and a lower score corresponds to that for player 2. Logically, player 1 would choose to play a move
to maximise the score, and player 2 would choose to play a move to minimise the score. Assuming both
players play logically, they would only choose moves that benefit them the most; hence, the score of a non-
terminal board position would be either the minimum or maximum of the scores of its children nodes.
Assuming both players play logically, children nodes with maximal and minimal scores will be chosen every
other turn, since the players alternate turns playing. By this, the score of non-terminal board positions can be
found through back-propagation.

P1

P1

P2

P1 ?

? ?

? ? ? ?

0 -1 -1 0 0 -1 -1 0 1

Max

P1

P2

P1 ?

??

-1001

-1-1-100-1-101

Min

P1

P2

P1 ?

0 -1

1 0 0 -1

0 -1 -1 0 0 -1 -1 -1 -1

Max

P1

P2

0

-10

-1001

-1-1-100-1-101

Best achievable score
Best move

Memoisation

After the score of a board is calculated, it is stored in memory with an index derived from the board position.
During gameplay, the AI can enumerate the valid moves and board positions, read their scores, and determine
the best move.
This chunk of memory is also used during the game tree search process for memoisation to optimise the
search time since a board position can potentially be reached via multiple move orders.

For instance, the moves 1@1, 2@2; 3@3 would achieve the same board position as 3@1, 2@2; 1@3.

Memoisation also offers other optimisation opportunities via symmetry.

Index

The board index is calculated by the numbers present on the board. The numbers on the board starting from
that in position 1, are concatenated into a nine-digit board index. Empty spaces are treated as the number 0.

projectpart2_1155174356.md 12/2/2022

9 / 19

Consider the board:

5|7|8
2| |
 |1|3

Its board index would be 013200578.

In practice, leading zeros will be dropped since board indices are stored as regular integers, but it does not
affect anything.

The source code segment responsible for computing index is as follows:

259 short r0 = sConcat(board[0][0], board[0][1], board[0][2]);
260 short r1 = sConcat(board[1][0], board[1][1], board[1][2]);
261 short r2 = sConcat(board[2][0], board[2][1], board[2][2]);
262
263 int boardIndex = lConcat(r0, r1, r2);

259 short r0 = sConcat(board[0][0], board[0][1], board[0][2]);
260 short r1 = sConcat(board[1][0], board[1][1], board[1][2]);
261 short r2 = sConcat(board[2][0], board[2][1], board[2][2]);
262
263 int boardIndex = lConcat(r0, r1, r2);

259 short r0 = sConcat(board[0][0], board[0][1], board[0][2]);
260 short r1 = sConcat(board[1][0], board[1][1], board[1][2]);
261 short r2 = sConcat(board[2][0], board[2][1], board[2][2]);
262
263 int boardIndex = lConcat(r0, r1, r2);

259 short r0 = sConcat(board[0][0], board[0][1], board[0][2]);
260 short r1 = sConcat(board[1][0], board[1][1], board[1][2]);
261 short r2 = sConcat(board[2][0], board[2][1], board[2][2]);
262
263 int boardIndex = lConcat(r0, r1, r2);

Two auxiliary functions are called to condense the process:

151 short sConcat(char a, char b, char c) {
152 return a * 100 + b * 10 + c;
153 }
154 int lConcat(short a, short b, short c) {
155 return a * 1000000 + b * 1000 + c;
156 }

151 short sConcat(char a, char b, char c) {
152 return a * 100 + b * 10 + c;
153 }
154 int lConcat(short a, short b, short c) {
155 return a * 1000000 + b * 1000 + c;
156 }

151 short sConcat(char a, char b, char c) {
152 return a * 100 + b * 10 + c;
153 }
154 int lConcat(short a, short b, short c) {
155 return a * 1000000 + b * 1000 + c;
156 }

151 short sConcat(char a, char b, char c) {
152 return a * 100 + b * 10 + c;
153 }
154 int lConcat(short a, short b, short c) {
155 return a * 1000000 + b * 1000 + c;
156 }

Storage format

Consider the score of any given position: there are only 4 different states we have to store.

Binary value Score State

00 - Uninitialised

01 -1 Player 2 wins

10 0 Draw

11 1 Player 1 wins

It can be observed that 2 bits are sufficient to store the score and state of each board position.

Considering the board index algorithm, the maximum index would be 987654321.
It can be observed that 246913581 bytes (= 987654321 * 2 bits = 1975308642 bits) are necessary to store all
board positions. (Note that a large majority of indices would correspond to invalid board positions; however,
there is no efficient algorithm to index only valid board positions; hence, it is decided that it should be a
reasonable compromise considering the ease and convenience.)

projectpart2_1155174356.md 12/2/2022

10 / 19

The source code segment responsible is as follows:

495 unsigned char* pScore; //? For AI, to be initialised later 495 unsigned char* pScore; //? For AI, to be initialised later 495 unsigned char* pScore; //? For AI, to be initialised later 495 unsigned char* pScore; //? For AI, to be initialised later

587 pScore = malloc(246913600); //? in bytes = 987654321 * 2 / 8 587 pScore = malloc(246913600); //? in bytes = 987654321 * 2 / 8 587 pScore = malloc(246913600); //? in bytes = 987654321 * 2 / 8 587 pScore = malloc(246913600); //? in bytes = 987654321 * 2 / 8

A chunk of memory is allocated for memoisation.

For each byte (8 bits), the scores for four board positions can be stored. The score values can be found at
offset {pScore + 2 * index}.

Consider the following memory chunk.

pScore+ 7 6 5 4 3 2 1 0

0x00 1 0 0 0 1 0 1 1

0x08 1 0 0 0 1 0 0 0

0x10 0 0 1 1 1 0 0 0

0x18 0 0 1 1 0 0 1 1

For a board with index 000000014, the score state can be found at offset 0x1C. The value is 11, which
would correspond to an advantage for player 1.

The source code segment responsible for reading the data values is as follows:

163 char getScore(unsigned char* pointer, int index) {
164 char shiftCount = index % 4 * 2;
165 char value = *(pointer + index / 4);
166 return (value >> shiftCount) - (value >> (shiftCount + 2) << 2) - 2;
167 }

163 char getScore(unsigned char* pointer, int index) {
164 char shiftCount = index % 4 * 2;
165 char value = *(pointer + index / 4);
166 return (value >> shiftCount) - (value >> (shiftCount + 2) << 2) - 2;
167 }

163 char getScore(unsigned char* pointer, int index) {
164 char shiftCount = index % 4 * 2;
165 char value = *(pointer + index / 4);
166 return (value >> shiftCount) - (value >> (shiftCount + 2) << 2) - 2;
167 }

163 char getScore(unsigned char* pointer, int index) {
164 char shiftCount = index % 4 * 2;
165 char value = *(pointer + index / 4);
166 return (value >> shiftCount) - (value >> (shiftCount + 2) << 2) - 2;
167 }

getScore returns the score value (0 / 1 / -1) for a given index. Bit-shift operations are used to isolate
only the bits enquired.
Note that the data format is designed in a way that the raw data value subtracted by 2 would be the
corresponding score value.

The source code segment responsible for writing the data value is as follows:

158 void initialiseScore(unsigned char* pointer, int index, signed char value) {
159 //! Cannot overwrite!
160 *(pointer + index / 4) += (value + 2) << (index % 4 * 2);
161 }

158 void initialiseScore(unsigned char* pointer, int index, signed char value) {
159 //! Cannot overwrite!
160 *(pointer + index / 4) += (value + 2) << (index % 4 * 2);
161 }

158 void initialiseScore(unsigned char* pointer, int index, signed char value) {
159 //! Cannot overwrite!
160 *(pointer + index / 4) += (value + 2) << (index % 4 * 2);
161 }

158 void initialiseScore(unsigned char* pointer, int index, signed char value) {
159 //! Cannot overwrite!
160 *(pointer + index / 4) += (value + 2) << (index % 4 * 2);
161 }

Note that there is no implementation for overwriting values since under normal circumstances, the
data should be only written once. In fact, initialiseScore would cause data corruption if it is called
twice on the same index.

projectpart2_1155174356.md 12/2/2022

11 / 19

Symmetry

Considering the symmetrical nature of the board, boards can be rotated and/or reflected to obtain new board
positions without affecting their respective scores. Note that at most 2 operations can be done on each board
before duplicates are introduced. This property is exploited to reduce necessary computation by a factor of 8.

↻↺

⇔

⇕

1 - 2
- - -
- - 3

⇔

- - 1
- - -
3 - 2

3 - -
- - -
2 - 1

⇔

↺
2 - 3
- - -
1 - -

2 - 1
- - -
3 - -

3 - 2
- - -
- - 1

1 - -
- - -
2 - 3

- - 3
- - -
1 - 2

354 //
355 short s0 = sConcat(board[2][0], board[1][0], board[0][0]);
356 short s1 = sConcat(board[2][1], board[1][1], board[0][1]);
357 short s2 = sConcat(board[2][2], board[1][2], board[0][2]);
358 //
359 short t0 = sConcat(board[2][2], board[2][1], board[2][0]);
360 short t1 = sConcat(board[1][2], board[1][1], board[1][0]);
361 short t2 = sConcat(board[0][2], board[0][1], board[0][0]);
362 //
363 short u0 = sConcat(board[0][2], board[1][2], board[2][2]);
364 short u1 = sConcat(board[0][1], board[1][1], board[2][1]);
365 short u2 = sConcat(board[0][0], board[1][0], board[2][0]);
366
367 //
368 int boardIndices[] = {
369 lConcat(r0, r1, r2), lConcat(r2, r1, r0),
370 lConcat(s0, s1, s2), lConcat(s2, s1, s0),
371 lConcat(t0, t1, t2), lConcat(t2, t1, t0),
372 lConcat(u0, u1, u2), lConcat(u2, u1, u0)};
373 for (char i = 0; i < 8; i++) { //? boardIndices.forEach
374 if (getScore(pScore, boardIndices[i]) != -2) { //! already initiliased
375 continue;
376 }
377 initialiseScore(pScore, boardIndices[i], finalScore);
378 }

354 //
355 short s0 = sConcat(board[2][0], board[1][0], board[0][0]);
356 short s1 = sConcat(board[2][1], board[1][1], board[0][1]);
357 short s2 = sConcat(board[2][2], board[1][2], board[0][2]);
358 //
359 short t0 = sConcat(board[2][2], board[2][1], board[2][0]);
360 short t1 = sConcat(board[1][2], board[1][1], board[1][0]);
361 short t2 = sConcat(board[0][2], board[0][1], board[0][0]);
362 //
363 short u0 = sConcat(board[0][2], board[1][2], board[2][2]);
364 short u1 = sConcat(board[0][1], board[1][1], board[2][1]);
365 short u2 = sConcat(board[0][0], board[1][0], board[2][0]);
366
367 //
368 int boardIndices[] = {
369 lConcat(r0, r1, r2), lConcat(r2, r1, r0),
370 lConcat(s0, s1, s2), lConcat(s2, s1, s0),
371 lConcat(t0, t1, t2), lConcat(t2, t1, t0),
372 lConcat(u0, u1, u2), lConcat(u2, u1, u0)};
373 for (char i = 0; i < 8; i++) { //? boardIndices.forEach
374 if (getScore(pScore, boardIndices[i]) != -2) { //! already initiliased
375 continue;
376 }
377 initialiseScore(pScore, boardIndices[i], finalScore);
378 }

354 //
355 short s0 = sConcat(board[2][0], board[1][0], board[0][0]);
356 short s1 = sConcat(board[2][1], board[1][1], board[0][1]);
357 short s2 = sConcat(board[2][2], board[1][2], board[0][2]);
358 //
359 short t0 = sConcat(board[2][2], board[2][1], board[2][0]);
360 short t1 = sConcat(board[1][2], board[1][1], board[1][0]);
361 short t2 = sConcat(board[0][2], board[0][1], board[0][0]);
362 //
363 short u0 = sConcat(board[0][2], board[1][2], board[2][2]);
364 short u1 = sConcat(board[0][1], board[1][1], board[2][1]);
365 short u2 = sConcat(board[0][0], board[1][0], board[2][0]);
366
367 //
368 int boardIndices[] = {
369 lConcat(r0, r1, r2), lConcat(r2, r1, r0),
370 lConcat(s0, s1, s2), lConcat(s2, s1, s0),
371 lConcat(t0, t1, t2), lConcat(t2, t1, t0),
372 lConcat(u0, u1, u2), lConcat(u2, u1, u0)};
373 for (char i = 0; i < 8; i++) { //? boardIndices.forEach
374 if (getScore(pScore, boardIndices[i]) != -2) { //! already initiliased
375 continue;
376 }
377 initialiseScore(pScore, boardIndices[i], finalScore);
378 }

354 //
355 short s0 = sConcat(board[2][0], board[1][0], board[0][0]);
356 short s1 = sConcat(board[2][1], board[1][1], board[0][1]);
357 short s2 = sConcat(board[2][2], board[1][2], board[0][2]);
358 //
359 short t0 = sConcat(board[2][2], board[2][1], board[2][0]);
360 short t1 = sConcat(board[1][2], board[1][1], board[1][0]);
361 short t2 = sConcat(board[0][2], board[0][1], board[0][0]);
362 //
363 short u0 = sConcat(board[0][2], board[1][2], board[2][2]);
364 short u1 = sConcat(board[0][1], board[1][1], board[2][1]);
365 short u2 = sConcat(board[0][0], board[1][0], board[2][0]);
366
367 //
368 int boardIndices[] = {
369 lConcat(r0, r1, r2), lConcat(r2, r1, r0),
370 lConcat(s0, s1, s2), lConcat(s2, s1, s0),
371 lConcat(t0, t1, t2), lConcat(t2, t1, t0),
372 lConcat(u0, u1, u2), lConcat(u2, u1, u0)};
373 for (char i = 0; i < 8; i++) { //? boardIndices.forEach
374 if (getScore(pScore, boardIndices[i]) != -2) { //! already initiliased
375 continue;
376 }
377 initialiseScore(pScore, boardIndices[i], finalScore);
378 }

r0, r1, r2 are as above.
Note that it is necessary to check that the value is not already initialised, since it is possible that a
board remains unchanged after rotations and/or reflections.

projectpart2_1155174356.md 12/2/2022

12 / 19

Gameplay
During gameplay, the AI will first enumerate the legal moves in the current position, then look up the
calculated move score table it made during memoisation, and then find a move with the best score (highest
score if it is player 1; lowest score if it is player 2).

Move randomisation

Notice that since the scores only denote if the given position is favourable to either player 1 or player 2, it is
possible for multiple moves to have the same score. The AI will choose a random move out of a list of
favourable moves to avoid game repetition.

The source code segment responsible is as follows:

449 //! play best move
450 int bestScore;
451 if (computerPlayerNumber == 1) {
452 bestScore = max(moveScores, moveScoresLength);
453 } else {
454 bestScore = min(moveScores, moveScoresLength);
455 }
456
457 // TODO: debug info
458 // printf("Best score: %d\n", bestScore);
459 // for (int i = 0; i < 45; i++) {
460 // printf("%d | Pos: %d | Num: %d | Score: %d\n", i, moves[i]

[0], moves[i][1], moveScores[i]);

461 // }
462 //
463
464 int bestMoveIndices[45];
465 int bestMoveIndicesLength = 0;
466 for (int i = 0; i < 45; i++) {
467 if (!moves[i][1]) {
468 continue;
469 }
470 if (moveScores[i] != bestScore) {
471 continue;
472 }
473 bestMoveIndices[bestMoveIndicesLength] = i;
474 bestMoveIndicesLength++;
475 }
476 //
477 decidedMoveIndex = bestMoveIndices[rand() % bestMoveIndicesLength];

449 //! play best move
450 int bestScore;
451 if (computerPlayerNumber == 1) {
452 bestScore = max(moveScores, moveScoresLength);
453 } else {
454 bestScore = min(moveScores, moveScoresLength);
455 }
456
457 // TODO: debug info
458 // printf("Best score: %d\n", bestScore);
459 // for (int i = 0; i < 45; i++) {
460 // printf("%d | Pos: %d | Num: %d | Score: %d\n", i, moves[i]

[0], moves[i][1], moveScores[i]);

461 // }
462 //
463
464 int bestMoveIndices[45];
465 int bestMoveIndicesLength = 0;
466 for (int i = 0; i < 45; i++) {
467 if (!moves[i][1]) {
468 continue;
469 }
470 if (moveScores[i] != bestScore) {
471 continue;
472 }
473 bestMoveIndices[bestMoveIndicesLength] = i;
474 bestMoveIndicesLength++;
475 }
476 //
477 decidedMoveIndex = bestMoveIndices[rand() % bestMoveIndicesLength];

449 //! play best move
450 int bestScore;
451 if (computerPlayerNumber == 1) {
452 bestScore = max(moveScores, moveScoresLength);
453 } else {
454 bestScore = min(moveScores, moveScoresLength);
455 }
456
457 // TODO: debug info
458 // printf("Best score: %d\n", bestScore);
459 // for (int i = 0; i < 45; i++) {
460 // printf("%d | Pos: %d | Num: %d | Score: %d\n", i, moves[i]

[0], moves[i][1], moveScores[i]);

461 // }
462 //
463
464 int bestMoveIndices[45];
465 int bestMoveIndicesLength = 0;
466 for (int i = 0; i < 45; i++) {
467 if (!moves[i][1]) {
468 continue;
469 }
470 if (moveScores[i] != bestScore) {
471 continue;
472 }
473 bestMoveIndices[bestMoveIndicesLength] = i;
474 bestMoveIndicesLength++;
475 }
476 //
477 decidedMoveIndex = bestMoveIndices[rand() % bestMoveIndicesLength];

449 //! play best move
450 int bestScore;
451 if (computerPlayerNumber == 1) {
452 bestScore = max(moveScores, moveScoresLength);
453 } else {
454 bestScore = min(moveScores, moveScoresLength);
455 }
456
457 // TODO: debug info
458 // printf("Best score: %d\n", bestScore);
459 // for (int i = 0; i < 45; i++) {
460 // printf("%d | Pos: %d | Num: %d | Score: %d\n", i, moves[i]

[0], moves[i][1], moveScores[i]);

461 // }
462 //
463
464 int bestMoveIndices[45];
465 int bestMoveIndicesLength = 0;
466 for (int i = 0; i < 45; i++) {
467 if (!moves[i][1]) {
468 continue;
469 }
470 if (moveScores[i] != bestScore) {
471 continue;
472 }
473 bestMoveIndices[bestMoveIndicesLength] = i;
474 bestMoveIndicesLength++;
475 }
476 //
477 decidedMoveIndex = bestMoveIndices[rand() % bestMoveIndicesLength];

The best achievable score within moveScores is first computed. All indices corresponding to moves
with the best score is pushed to a list, then rand is called to choose a random move among the best
moves.

projectpart2_1155174356.md 12/2/2022

13 / 19

Respect of difficulty

As demonstrated above, the user is prompted to choose a difficulty level in the range of [0-100]. The difficulty
level is treated as a % of when the computer will choose to play the best move, otherwise, a random move.

For example, a difficulty level of 40 would entice the AI to make the best moves 40% of the time, and
random moves 60% of the time.

The source code segment responsible is as follows:

445 if (rand() % 100 >= computerDifficultyLevel) { //? 0-99 < 100 (max)
446 //! player random move
447 decidedMoveIndex = rand() % moveScoresLength;
448 } else {
449 //! play best move

445 if (rand() % 100 >= computerDifficultyLevel) { //? 0-99 < 100 (max)
446 //! player random move
447 decidedMoveIndex = rand() % moveScoresLength;
448 } else {
449 //! play best move

445 if (rand() % 100 >= computerDifficultyLevel) { //? 0-99 < 100 (max)
446 //! player random move
447 decidedMoveIndex = rand() % moveScoresLength;
448 } else {
449 //! play best move

445 if (rand() % 100 >= computerDifficultyLevel) { //? 0-99 < 100 (max)
446 //! player random move
447 decidedMoveIndex = rand() % moveScoresLength;
448 } else {
449 //! play best move

rand is first called to determine whether the AI would proceed to play a random move or the best
move. If it is compelled to play a random move, another rand call would determine which random
valid move it would make.

Move notification

The AI will notify the player what move it had made.

...
Player 1's turn ###
1	8	2
5		
Unused numbers:
3 4 6 7 9
The computer played the number 7 at position 2
Player 2's turn ###
1	8	2
5	7	
Unused numbers:
3 4 6 9
...

Advantages
This AI utilises a full game tree search to determine its moves. During this search process, it goes through
every possible move and game to find the best next move. With this approach, it can solve the game in its
entirety. Therefore, it is a theoretically perfect strategy. Additionally, since the game is solved, it can be
confidently said that player 1 will always win with perfect play, as shown from the starting empty board
position having a score in favour of player 1.

projectpart2_1155174356.md 12/2/2022

14 / 19

Feature B: Invalid User Input Checking
This feature aims to sanitise invalid user inputs and prompt the user to re-enter said inputs.

Game initialisation
As demonstrated in the previous section, a new game initialisation phase is implemented to account for the
two game modes and their settings.

Game mode choice

The user is prompted to choose between a single- or multi-player game. The program will warn and re-
prompt the user if their input is out of range [1-2].

Enter player count: -50
Player count must be 1 or 2!
Enter player count:

The source code segment responsible is as follows:

531 int inputIsInvalid = 1;
532 while (inputIsInvalid) {
533 inputIsInvalid = 0;
534 int playerCount = 0;
535 //
536 printf("Enter player count: ");
537 scanf("%d", &playerCount);
538 if (playerCount != 1 && playerCount != 2) {
539 printf("Player count must be 1 or 2!\n"

);
540 inputIsInvalid = 1;
541 }
542 playWithCPU = playerCount % 2;
543 }

531 int inputIsInvalid = 1;
532 while (inputIsInvalid) {
533 inputIsInvalid = 0;
534 int playerCount = 0;
535 //
536 printf("Enter player count: ");
537 scanf("%d", &playerCount);
538 if (playerCount != 1 && playerCount != 2) {
539 printf("Player count must be 1 or 2!\n"

);
540 inputIsInvalid = 1;
541 }
542 playWithCPU = playerCount % 2;
543 }

531 int inputIsInvalid = 1;
532 while (inputIsInvalid) {
533 inputIsInvalid = 0;
534 int playerCount = 0;
535 //
536 printf("Enter player count: ");
537 scanf("%d", &playerCount);
538 if (playerCount != 1 && playerCount != 2) {
539 printf("Player count must be 1 or 2!\n"

);
540 inputIsInvalid = 1;
541 }
542 playWithCPU = playerCount % 2;
543 }

531 int inputIsInvalid = 1;
532 while (inputIsInvalid) {
533 inputIsInvalid = 0;
534 int playerCount = 0;
535 //
536 printf("Enter player count: ");
537 scanf("%d", &playerCount);
538 if (playerCount != 1 && playerCount != 2) {
539 printf("Player count must be 1 or 2!\n"

);
540 inputIsInvalid = 1;
541 }
542 playWithCPU = playerCount % 2;
543 }

Difficulty choice

The user is also prompted to choose a difficulty level for the AI. The program will warn and re-prompt the user
if their input is out of range [0-100].

Enter player count: 1
Enter desired difficulty setting (0-100, higher is harder): -10
Difficulty must be between 0-100!
Enter desired difficulty setting (0-100, higher is harder):

projectpart2_1155174356.md 12/2/2022

15 / 19

The source code segment responsible is as follows:

445 if (rand() % 100 >= computerDifficultyLevel) { //? 0-99 < 100 (max)
446 //! player random move
447 decidedMoveIndex = rand() % moveScoresLength;
448 } else {
449 //! play best move

445 if (rand() % 100 >= computerDifficultyLevel) { //? 0-99 < 100 (max)
446 //! player random move
447 decidedMoveIndex = rand() % moveScoresLength;
448 } else {
449 //! play best move

445 if (rand() % 100 >= computerDifficultyLevel) { //? 0-99 < 100 (max)
446 //! player random move
447 decidedMoveIndex = rand() % moveScoresLength;
448 } else {
449 //! play best move

445 if (rand() % 100 >= computerDifficultyLevel) { //? 0-99 < 100 (max)
446 //! player random move
447 decidedMoveIndex = rand() % moveScoresLength;
448 } else {
449 //! play best move

Player number choice

The user is also prompted to choose whether to play first in single-player mode. The program will warn and
re-prompt the user if their input is out of range [1-2].

Enter player count: 1
Enter desired difficulty setting (0-100, higher is harder): 60
Enter which player you will play as (Player 1 will go first): 9
You must input 1 or 2!
Enter which player you will play as (Player 1 will go first):

The source code segment responsible is as follows:

565 //* player number choice
566 inputIsInvalid = 1;
567 while (inputIsInvalid) {
568 inputIsInvalid = 0;
569 //
570 int answer;
571 printf("Enter which player you will play as (Player 1 will go first): ");
572 scanf("%d", &answer);
573 if (answer != 1 && answer != 2) {
574 printf("You must input 1 or 2!\n");
575 inputIsInvalid = 1;
576 continue;
577 }
578 //
579 computerPlayerNumber = 3 - answer;
580 if (answer == 1) {
581 printf("!!! You are player 1 - Computer is player 2 !!!\n");
582 } else {
583 printf("!!! Computer is player 1 - You are player 2 !!!\n");
584 }
585 }

565 //* player number choice
566 inputIsInvalid = 1;
567 while (inputIsInvalid) {
568 inputIsInvalid = 0;
569 //
570 int answer;
571 printf("Enter which player you will play as (Player 1 will go first): ");
572 scanf("%d", &answer);
573 if (answer != 1 && answer != 2) {
574 printf("You must input 1 or 2!\n");
575 inputIsInvalid = 1;
576 continue;
577 }
578 //
579 computerPlayerNumber = 3 - answer;
580 if (answer == 1) {
581 printf("!!! You are player 1 - Computer is player 2 !!!\n");
582 } else {
583 printf("!!! Computer is player 1 - You are player 2 !!!\n");
584 }
585 }

565 //* player number choice
566 inputIsInvalid = 1;
567 while (inputIsInvalid) {
568 inputIsInvalid = 0;
569 //
570 int answer;
571 printf("Enter which player you will play as (Player 1 will go first): ");
572 scanf("%d", &answer);
573 if (answer != 1 && answer != 2) {
574 printf("You must input 1 or 2!\n");
575 inputIsInvalid = 1;
576 continue;
577 }
578 //
579 computerPlayerNumber = 3 - answer;
580 if (answer == 1) {
581 printf("!!! You are player 1 - Computer is player 2 !!!\n");
582 } else {
583 printf("!!! Computer is player 1 - You are player 2 !!!\n");
584 }
585 }

565 //* player number choice
566 inputIsInvalid = 1;
567 while (inputIsInvalid) {
568 inputIsInvalid = 0;
569 //
570 int answer;
571 printf("Enter which player you will play as (Player 1 will go first): ");
572 scanf("%d", &answer);
573 if (answer != 1 && answer != 2) {
574 printf("You must input 1 or 2!\n");
575 inputIsInvalid = 1;
576 continue;
577 }
578 //
579 computerPlayerNumber = 3 - answer;
580 if (answer == 1) {
581 printf("!!! You are player 1 - Computer is player 2 !!!\n");
582 } else {
583 printf("!!! Computer is player 1 - You are player 2 !!!\n");
584 }
585 }

projectpart2_1155174356.md 12/2/2022

16 / 19

Gameplay
During regular gameplay, the program will check the validity of the entered position and number. If either or
both of them are invalid, the program will warn the user and re-prompt them to enter.

...
6		
9	2	
	1	
Unused numbers:
3 4 5 7 8
Player 1's turn ###
Input the position: 20
Input the number: 14
Position can only be an integer between 1-9!
Number can only be an integer between 1-9!
Input the position: 4
Input the number: 6
Position is occupied!
Player 1 can only input odd integers!
Input the position: 6
Input the number: 1
1 is already used!
Input the position:

User entered both an out-of-range position (20) and number (14), and was warned.
User then entered an occupied position (4) and an invalid number (6). Note that 6 is not in the pool of
usable number for player 1, and it is also already used in the game. Notice that the program decided to
only issue a warning for the incorrect odd/even parity since it is more important.
User then entered a used number, and was warned.

As demonstrated above, the program can issue warnings about the entered position and number
independently. The above snippet also illustrated the precedences of the warnings.

Priority Position Number

1 Out of range [1-9] Out of range [1-9]

2 Occupancy Wrong number parity (odd/even)

3 Used number

projectpart2_1155174356.md 12/2/2022

17 / 19

The source code segment responsible is as follows:

72 //! player input
73 int inputIsInvalid = 1;
74 while (inputIsInvalid) {
75 inputIsInvalid = 0;
76
77 //?
78 printf("Input the position: ");
79 scanf("%d", &position);
80
81 printf("Input the number: ");
82 scanf("%d", &number);
83
84 #pragma region Validity check //!
85 if (position < 1 || position > 9) {
86 printf("Position can only be an integer between 1-9!\n");
87 inputIsInvalid = 1;
88 } else {
89 if (gameBoard[(position - 1) / 3][(position - 1) % 3]) {
90 printf("Position is occupied!\n");
91 inputIsInvalid = 1;
92 }
93 }
94 if (number < 1 || number > 9) {
95 printf("Number can only be an integer between 1-9!\n");
96 inputIsInvalid = 1;
97 } else {
98 if (currentPlayer % 2 != number % 2) {
99 if (currentPlayer == 1) {
100 printf("Player 1 can only input odd integers!\n");
101 } else {
102 printf("Player 2 can only input even integers!\n");
103 }
104 inputIsInvalid = 1;
105 } else {
106 if (numberUsed[number - 1]) {
107 printf("%d is already used!\n", number);
108 inputIsInvalid = 1;
109 }
110 }
111 }
112 #pragma endregion
113 }

72 //! player input
73 int inputIsInvalid = 1;
74 while (inputIsInvalid) {
75 inputIsInvalid = 0;
76
77 //?
78 printf("Input the position: ");
79 scanf("%d", &position);
80
81 printf("Input the number: ");
82 scanf("%d", &number);
83
84 #pragma region Validity check //!
85 if (position < 1 || position > 9) {
86 printf("Position can only be an integer between 1-9!\n");
87 inputIsInvalid = 1;
88 } else {
89 if (gameBoard[(position - 1) / 3][(position - 1) % 3]) {
90 printf("Position is occupied!\n");
91 inputIsInvalid = 1;
92 }
93 }
94 if (number < 1 || number > 9) {
95 printf("Number can only be an integer between 1-9!\n");
96 inputIsInvalid = 1;
97 } else {
98 if (currentPlayer % 2 != number % 2) {
99 if (currentPlayer == 1) {
100 printf("Player 1 can only input odd integers!\n");
101 } else {
102 printf("Player 2 can only input even integers!\n");
103 }
104 inputIsInvalid = 1;
105 } else {
106 if (numberUsed[number - 1]) {
107 printf("%d is already used!\n", number);
108 inputIsInvalid = 1;
109 }
110 }
111 }
112 #pragma endregion
113 }

72 //! player input
73 int inputIsInvalid = 1;
74 while (inputIsInvalid) {
75 inputIsInvalid = 0;
76
77 //?
78 printf("Input the position: ");
79 scanf("%d", &position);
80
81 printf("Input the number: ");
82 scanf("%d", &number);
83
84 #pragma region Validity check //!
85 if (position < 1 || position > 9) {
86 printf("Position can only be an integer between 1-9!\n");
87 inputIsInvalid = 1;
88 } else {
89 if (gameBoard[(position - 1) / 3][(position - 1) % 3]) {
90 printf("Position is occupied!\n");
91 inputIsInvalid = 1;
92 }
93 }
94 if (number < 1 || number > 9) {
95 printf("Number can only be an integer between 1-9!\n");
96 inputIsInvalid = 1;
97 } else {
98 if (currentPlayer % 2 != number % 2) {
99 if (currentPlayer == 1) {
100 printf("Player 1 can only input odd integers!\n");
101 } else {
102 printf("Player 2 can only input even integers!\n");
103 }
104 inputIsInvalid = 1;
105 } else {
106 if (numberUsed[number - 1]) {
107 printf("%d is already used!\n", number);
108 inputIsInvalid = 1;
109 }
110 }
111 }
112 #pragma endregion
113 }

72 //! player input
73 int inputIsInvalid = 1;
74 while (inputIsInvalid) {
75 inputIsInvalid = 0;
76
77 //?
78 printf("Input the position: ");
79 scanf("%d", &position);
80
81 printf("Input the number: ");
82 scanf("%d", &number);
83
84 #pragma region Validity check //!
85 if (position < 1 || position > 9) {
86 printf("Position can only be an integer between 1-9!\n");
87 inputIsInvalid = 1;
88 } else {
89 if (gameBoard[(position - 1) / 3][(position - 1) % 3]) {
90 printf("Position is occupied!\n");
91 inputIsInvalid = 1;
92 }
93 }
94 if (number < 1 || number > 9) {
95 printf("Number can only be an integer between 1-9!\n");
96 inputIsInvalid = 1;
97 } else {
98 if (currentPlayer % 2 != number % 2) {
99 if (currentPlayer == 1) {
100 printf("Player 1 can only input odd integers!\n");
101 } else {
102 printf("Player 2 can only input even integers!\n");
103 }
104 inputIsInvalid = 1;
105 } else {
106 if (numberUsed[number - 1]) {
107 printf("%d is already used!\n", number);
108 inputIsInvalid = 1;
109 }
110 }
111 }
112 #pragma endregion
113 }

Notice the warning priorities as described above.

projectpart2_1155174356.md 12/2/2022

18 / 19

Validity check rationale
The above three demonstrated validity checks use the same rationale.

User Input Valid?

Warn user

Valid?

Yes

No
Have

warnings?

Add warning

This model allows the program to issue multiple warnings at the same time while being able to determine
warning priorities.

projectpart2_1155174356.md 12/2/2022

19 / 19

Documentary
This section documents the attempts and workarounds in order to overcome various challenges in this
project. Most of the challenge stems from the AI implementation, as one might be able to intuit.

Writing a full game tree search algorithm is not as hard as I had imagined, but it definitely comes with a lot of
annoying problems especially considering the language I had to work with. I deliberately did not go on to
research algorithms since that would defeat the fun of coming up with my own approach. I have some prior
knowledge about how chess engines work, but apart from their general gist, that was about it.
To add to the challenge, C is not a very versatile language, in the sense that it lacks a lot of useful modern
language features. Nonetheless, I attempted to write the algorithm in C in the beginning, but I quickly got
frustrated by its limitations and verbosity in even simple operations.
I decided to switch to JavaScript (JS) to flesh out the logic first before transpiling back into C, considering I am
exponentially more fluent in JS, not to mention it has significantly more debugging tools available. Despite
this, I still had to hold myself back from using too many modern language features lest the transpilation be
tedious. Along the way, considering the transpilation process, I switched to TypeScript (TS), which is a typed
superset of JS, since I thought it would lessen my confusion at the later stages.
The bulk of the logic is rather easy, and I got to transpiling. I have never transpiled before, but it went a lot
more smoothly than I had imagined, although a lot of simple one-liners in TS can only be expressed in 10+
lines of C code, which killed the elegance quite a bit.

For the actual logic itself, I had considered doing short-circuit evaluations instead of full game tree searches
since they are significantly faster, and it would also provide an easy parameter (depth) to be tweaked as the
difficulty setting. However, it is very difficult to write a good evaluation algorithm, since this game is arguably
more reliant on pure logic than visual patterns like chess does.
Eventually, I decided to go with the full game tree search as I originally intended to. I didn't realise it at the
time, but this decision also opened up a huge optimisation opportunity. Unlike in short-circuit evaluations
where scores span a huge range, scores in full tree searches can only be 0, 1, or -1. I went ahead and tried to
use this property and store the scores as the smallest addressable type in C, which would be char. However, I
quickly found out that even with char, the memoisation array would be too large for C. Despite only having 8
bits, char is still too large of a type. I was stuck for a very long time until I had the idea to invent a custom
data format. I noticed that I really only needed 2 bits for each board position, and hence birthed the memory
chunk method I introduced above.
When I was stuck, I also went ahead and shortened all the variable types to char and short since I figured
the program rarely needs to handle large numbers anyway.

As mentioned above, I had intended to implement a difficulty setting from the very beginning, but the
simplified approach I used does not seem to allow for it. While I could change the depth of the search, the
challenge is to also write a good algorithm for it, as I have mentioned above. Alongside this, the maximum
depth of this game is too shallow for any meaningful difficulty setting anyway. Therefore, as a compromise, I
implemented difficulty by mixing random moves among the best moves, and it just so happens to also be the
easiest option to implement. Although I would argue that this is not what true difficulty level would and
should look like, I genuinely cannot be bothered to conceive of a better way.

