projectpart2_1155174356.md 12/2/2022

ENGG1110 Course Project Report

Chan Cheuk Ka (1155174356)

1/19



projectpart2_1155174356.md 12/2/2022

Table of Contents

® Feature A: Computer Strategy
© Game initialisation
= Difficulty choice
= Player number choice
= Game tree progress tracker
o Al
= Game tree
= Move enumeration
= Depth-first search
= Game termination
= Minimax
= Memoisation
" |ndex
= Storage format
= Symmetry
© Gameplay
= Move randomisation
= Respect of difficulty
= Move notification
© Advantages
® Feature B: Invalid User Input Checking
© Game initialisation
= Game mode choice
= Difficulty choice
= Player number choice
© Gameplay
© Validity check rationale
®* Documentary

2719



projectpart2_1155174356.md 12/2/2022

Feature A: Computer Strategy

A single-player mode is implemented where the user can play against a strategic computer opponent.

Game initialisation

Due to having a choice between single- and multi-player, the program now has to go through an initialisation

phase.

Difficulty choice

The user is given the freedom to choose the Al's difficulty level. The intricacies of difficulty level will be

discussed more below.

Enter player count: 1
Enter desired difficulty setting (©-100, higher is harder): 60

Player number choice

The user is also given a choice to play as either player.

Enter player count: 1

Enter desired difficulty setting (©-100, higher is harder): 60
Enter which player you will play as (Player 1 will go first): 2
I'l'l Computer is player 1 - You are player 2 !!!

Notice that a notification is also displayed to denote who is playing as which player number.

Game tree progress tracker

The game tree search takes a noticeable amount of time to complete. Hence, a progress tracker is

implemented to inform the user.

Enter player count: 1

Enter desired difficulty setting (©-100, higher is harder): 60
Enter which player you will play as (Player 1 will go first): 2
I'l'l Computer is player 1 - You are player 2 !!!

Doing game tree search: 2426721/3516986 (69%)

3/19



projectpart2_1155174356.md 12/2/2022

The gameplay can truly start after the game tree search has been completed.

Doing game-tree search: 3516986/3516986 (100%)
Done.
### Player 1's turn ###

Unused numbers:
123456789

Al

This program implemented a strategic Al designed to play theoretically perfectly. The Al does a game tree
search in a depth-first search manner. During the search, it determines whether a board is advantageous to
which player, then proceeds to find the best move in the current board position.

Game tree

A game tree is a tree of possible moves that both players can make in a given board position. For each move
made, a new board position would be attained, with its tree of possible moves.

Player 1's Turn - - -

v v v v
Player 2's Turn = E =
. ) ) v
- - .| | .
S s
] ] ] ] 283
etc...
L] L] [ ==

4/19



projectpart2_1155174356.md 12/2/2022

Move enumeration
Moves are enumerated for each board position to generate a list of valid moves.
The source code segment responsible is as follows:

char enumMoves (
char moves[45][2]
char board[3][3],
char nums[2][5],
char isPlayerlTurn

char moveCount = 0;
for (char pos = 0; pos < 9; pos++) {

if (board[pos / 3][pos % 3]) {
continue;

for (char i = 0; i < 5; i++) {
char num = nums[1 - isPlayerlTurn][i];
if (num == @) {
continue;

}

moves[moveCount][0] =
moves[moveCount][1]
moveCount++;

return moveCount;

Each board tile is iterated through to first check if they are empty, then all the remaining unused

numbers are pushed to a valid move list.

5/19



projectpart2_1155174356.md 12/2/2022

Depth-first search

A new board position is then generated and assessed for each move. This process is done recursively.

The source code segment responsible is as follows:

moves[45][2] = {0};
moveCount = enumMoves(moves, board, nums, isPlayerlTurn);

moveScores[45] = {-10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10
, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10
, -10, -1, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10
» -10};

moveScoresLength = 0;

for ( i=0; i< 45; i++) {
movePosition = moves[i][@];
moveNumber = moves[i][1];
if (!moveNumber) {
continue;

newBoard[3][3];

for (char j = 0; j < 3; j++) {
newBoard[j][0] board[j][@];
newBoard[j][1] board[j][1];
newBoard[j][2] board[j][2];

newNums[2][5];

(char j =05 j < 25 j++) {
newNums[j][@] = nums[j][@];
newNums[j][1] = nums[j][1];
newNums[j][2] = nums[j][2];
newNums[j][3] = nums[j][3];
newNums[j][4] = nums[j][4];

newIsPlayerlTurn = !isPlayerlTurn;
newBoard[movePosition / 3][movePosition % 3] = moveNumber;

for (char j = 0; j < 5; j++) {
if (newNums[1 - isPlayerlTurn][j] == moveNumber) {
newNums[1 - isPlayerlTurn][j] 0;
break;

treeScore = tree(pScore, newBoard, newNums, newIsPlayerlTurn, searched);
moveScores[moveScoresLength] = treeScore;
moveScoresLength++;

Using the move list given by , each possible future board positions is simulated and iterated
through recursively via




projectpart2_1155174356.md 12/2/2022

Game termination

If a board qualifies for game termination (win/lose/draw), a score is assigned to the board depending on the

termination mode: 1 denotes player 1 wins; -1 denotes player 2 wins; © denotes a draw.

Player 1's Turn - - -

. ) ' 4
. - - - - - - - -9
PlayerZSTurn 1o T -] T
v v 4 v
12 - 1 -2
579 L.
61 4
| L L .| 283
etc... D
Y
. ; ; ; . : : i Draw
123 132
Y Y
P2 Win Pl Win
The source code segment responsible is as follows:
char finalScore = 0;
if (aiOnlyHasWinner(board)) {
finalScore = 1 - 2 * isPlayerlTurn;
} else if (aiOnlyIsFull(board)) {
finalScore = 0;
} else {
If a game termination condition is met, is set directly and the branch is terminated.
Notice that { } will give 1 or -1 depending on whose turn it was.

7119



projectpart2_1155174356.md 12/2/2022

Minimax

Consider a branch and its children nodes. Recall that a higher score corresponds to a larger advantage for
player 1, and a lower score corresponds to that for player 2. Logically, player 1 would choose to play a move
to maximise the score, and player 2 would choose to play a move to minimise the score. Assuming both
players play logically, they would only choose moves that benefit them the most; hence, the score of a non-
terminal board position would be either the minimum or maximum of the scores of its children nodes.
Assuming both players play logically, children nodes with maximal and minimal scores will be chosen every
other turn, since the players alternate turns playing. By this, the score of non-terminal board positions can be
found through back-propagation.

P1 P1
P2 z

e~

T ? : nf
e owmdb o Fovdbodon

P1 P1 @Best achievable score

Max ( Best move
P2 Lol P2

LILLE P1 T ]
L on b d b Fowdb oo

P1

After the score of a board is calculated, it is stored in memory with an index derived from the board position.
During gameplay, the Al can enumerate the valid moves and board positions, read their scores, and determine
the best move.

This chunk of memory is also used during the game tree search process for memoisation to optimise the
search time since a board position can potentially be reached via multiple move orders.

For instance, the moves would achieve the same board position as

Memoisation also offers other optimisation opportunities via symmetry.
Index

The board index is calculated by the numbers present on the board. The numbers on the board starting from
that in position 1, are concatenated into a nine-digit board index. Empty spaces are treated as the number

8/19



projectpart2_1155174356.md 12/2/2022

Consider the board:

5|7|8
2| |
[1]3

Its board index would be

In practice, leading zeros will be dropped since board indices are stored as regular integers, but it does not
affect anything.

The source code segment responsible for computing index is as follows:

short r@e = sConcat(board[@][@], board[@][1], board[0][2]);
short rl = sConcat(board[1][@], board[1][1], board[1][2]);
short r2 sConcat(board[2][@], board[2][1], board[2][2]);

int boardIndex = lConcat(r@, ri, r2);

Two auxiliary functions are called to condense the process:

short sConcat(char a, char b, char c) {
return a * 100 + b * 10 + c;

}

int 1lConcat(short a, short b, short c) {
return a * 1000000 + b * 1000 + c;

Storage format
Consider the score of any given position: there are only 4 different states we have to store.

Binary value Score State

- Uninitialised

Player 2 wins

Draw

Player 1 wins

It can be observed that 2 bits are sufficient to store the score and state of each board position.

Considering the board index algorithm, the maximum index would be :

It can be observed that 246913581 bytes (= 987654321 * 2 bits = 1975308642 bits) are necessary to store all
board positions. (Note that a large majority of indices would correspond to invalid board positions; however,
there is no efficient algorithm to index only valid board positions; hence, it is decided that it should be a
reasonable compromise considering the ease and convenience.)

9/19



projectpart2_1155174356.md 12/2/2022

The source code segment responsible is as follows:

unsigned char* pScore;

pScore = malloc(246913600);

A chunk of memory is allocated for memoisation.

For each byte (8 bits), the scores for four board positions can be stored. The score values can be found at
offset { }.

Consider the following memory chunk.

For a board with index , the score state can be found at offset . The value is 11, which
would correspond to an advantage for player 1.

The source code segment responsible for reading the data values is as follows:

char getScore(unsigned char* pointer, int index) {
char shiftCount = index % 4 * 2;

char value = *(pointer + index / 4);
return (value >> shiftCount) - (value >> (shiftCount + 2) << 2) - 2;

returns the score value (¢ / 1 / -1) for a given . Bit-shift operations are used to isolate
only the bits enquired.
Note that the data format is designed in a way that the raw data value subtracted by 2 would be the
corresponding score value.

The source code segment responsible for writing the data value is as follows:

void initialiseScore(unsigned char* pointer, int index, signed char value) {

*(pointer + index / 4) += (value + 2) << (index % 4 * 2);

Note that there is no implementation for overwriting values since under normal circumstances, the
data should be only written once. In fact, would cause data corruption if it is called
twice on the same

10/19



projectpart2_1155174356.md

Symmetry

12/2/2022

Considering the symmetrical nature of the board, boards can be rotated and/or reflected to obtain new board

positions without affecting their respective scores. Note that at most 2 operations can be done on each board

before duplicates are introduced. This property is exploited to reduce necessary computation by a factor of 8.

- -3

1 -2

sConcat(board[2][@], board[1][@],
sConcat(board[2][1], board[1][1],
sConcat(board[2][2], board[1][2],

sConcat(board[2][2], board[2][1],
sConcat(board[1][2], board[1][1],

sConcat(board[@][2], board[0][1],

sConcat(board[@][2], board[1][2],
sConcat(board[@][1], board[1][1],
sConcat(board[@][0], board[1][0],

boardIndices =N

1Concat(re, ri, r2), lConcat(r2, ri, ro),
1Concat(s@, s1, s2), lConcat(s2, s1, s9),
lConcat(te, t1, t2), lConcat(t2, t1, te),

board[0][0]);
board[0][1]);
board[0][2]);

board[2][0]);
board[1][0]);
board[0][0]);

board[2][2]);
board[2][1]);
board[2][@]);

1Concat(u@, ul, u2), lConcat(u2, ul, u@)};

( i=0;1ic<8; i++) {
if (getScore(pScore, boardIndices[i]) !=
continue;

}

initialiseScore(pScore, boardIndices[i],

L 7, are as above.

Note that it is necessary to check that the value is not already initialised, since it is possible that a

board remains unchanged after rotations and/or reflections.

11719

-2) A

finalScore);




projectpart2_1155174356.md

12/2/2022

Gameplay

During gameplay, the Al will first enumerate the legal moves in the current position, then look up the
calculated move score table it made during memoisation, and then find a move with the best score (highest
score if it is player 1; lowest score if it is player 2).

Move randomisation

Notice that since the scores only denote if the given position is favourable to either player 1 or player 2, it is
possible for multiple moves to have the same score. The Al will choose a random move out of a list of
favourable moves to avoid game repetition.

The source code segment responsible is as follows:

int bestScore;
if (computerPlayerNumber == 1) {

bestScore = max(moveScores, moveScoresLength);
} else {

bestScore = min(moveScores, moveScoreslLength);

int bestMoveIndices[45];
int bestMoveIndicesLength = 0;
for (int i = @; i < 45; i++) {
if (Imoves[i][1]) {
continue;
¥
if (moveScores[i] != bestScore) {
continue;
}
bestMoveIndices[bestMoveIndicesLength] = i;
bestMoveIndicesLength++;

decidedMoveIndex = bestMovelIndices[rand() % bestMoveIndiceslLength];

The best achievable score within is first computed. All indices corresponding to moves
with the best score is pushed to a list, then is called to choose a random move among the best
moves.

12/19



projectpart2_1155174356.md 12/2/2022

Respect of difficulty

As demonstrated above, the user is prompted to choose a difficulty level in the range of [0-100]. The difficulty
level is treated as a % of when the computer will choose to play the best move, otherwise, a random move.

For example, a difficulty level of 40 would entice the Al to make the best moves 40% of the time, and

random moves 60% of the time.

The source code segment responsible is as follows:

if (rand() % 100 >= computerDifficultylLevel) {

decidedMovelIndex = rand() % moveScoresLength;
} else {

is first called to determine whether the Al would proceed to play a random move or the best

move. If it is compelled to play a random move, another call would determine which random

valid move it would make.

Move notification

The Al will notify the player what move it had made.

### Player 1's turn #i##

|1]8]2]

I

Unused numbers:
34679

The computer played the number 7 at position 2
### Player 2's turn ###

|11
|1]8]2]
15171 |
Unused numbers:
34609

Advantages

This Al utilises a full game tree search to determine its moves. During this search process, it goes through
every possible move and game to find the best next move. With this approach, it can solve the game in its
entirety. Therefore, it is a theoretically perfect strategy. Additionally, since the game is solved, it can be
confidently said that player 1 will always win with perfect play, as shown from the starting empty board

position having a score in favour of player 1.

13719



projectpart2_1155174356.md 12/2/2022

Feature B: Invalid User Input Checking

This feature aims to sanitise invalid user inputs and prompt the user to re-enter said inputs.

Game initialisation

As demonstrated in the previous section, a new game initialisation phase is implemented to account for the
two game modes and their settings.

Game mode choice

The user is prompted to choose between a single- or multi-player game. The program will warn and re-
prompt the user if their input is out of range [1-2].

Enter player count: -50
Player count must be 1 or 2!
Enter player count:

The source code segment responsible is as follows:

int inputIsInvalid = 1;

while (inputIsInvalid) {
inputIsInvalid = 0;
int playerCount = 0;

printf("Enter player count: ");
scanf("%d", &playerCount);

if (playerCount != 1 && playerCount != 2) {
printf("Player count must be 1 or 2!\n"

inputIsInvalid = 1;

}
playWithCPU = playerCount % 2;

Difficulty choice

The user is also prompted to choose a difficulty level for the Al. The program will warn and re-prompt the user
if their input is out of range [0-100].

Enter player count: 1

Enter desired difficulty setting (©-100, higher is harder): -10
Difficulty must be between ©-100!

Enter desired difficulty setting (©-100, higher is harder):

14/19



projectpart2_1155174356.md

The source code segment responsible is as follows:

if (rand() % 100 >= computerDifficultylLevel) {

decidedMovelIndex = rand() % moveScoresLength;
} else {

Player number choice

12/2/2022

The user is also prompted to choose whether to play first in single-player mode. The program will warn and

re-prompt the user if their input is out of range [1-2].

Enter player count: 1

Enter desired difficulty setting (©-100, higher is harder): 60
Enter which player you will play as (Player 1 will go first): 9

You must input 1 or 2!

Enter which player you will play as (Player 1 will go first):

The source code segment responsible is as follows:

inputIsInvalid = 1;
while (inputIsInvalid) {
inputIsInvalid = 0;

int answer;

printf("Enter which player you will play as (Player 1 will go first):

scanf("%d", &answer);

if (answer != 1 && answer != 2) {
printf("You must input 1 or 2!\n");
inputIsInvalid = 1;
continue;

computerPlayerNumber = 3 - answer;
if (answer == 1) {

printf("!!! You are player 1 - Computer is player 2 !!!\n");

} else {

printf("!!! Computer is player 1 - You are player 2 !!1\n");

15719




projectpart2_1155174356.md 12/2/2022

Gameplay

During regular gameplay, the program will check the validity of the entered position and number. If either or
both of them are invalid, the program will warn the user and re-prompt them to enter.

6l | |

|9]2] |

| |21] |

Unused numbers:
34578

### Player 1's turn #i#

Input the position: 20

Input the number: 14

Position can only be an integer between 1-9!
Number can only be an integer between 1-9!
Input the position: 4

Input the number: 6

Position is occupied!

Player 1 can only input odd integers!
Input the position: 6

Input the number: 1

1 is already used!

Input the position:

User entered both an out-of-range position (20) and number (14), and was warned.

User then entered an occupied position (4) and an invalid number (6). Note that 6 is not in the pool of
usable number for player 1, and it is also already used in the game. Notice that the program decided to
only issue a warning for the incorrect odd/even parity since it is more important.

User then entered a used number, and was warned.

As demonstrated above, the program can issue warnings about the entered position and number
independently. The above snippet also illustrated the precedences of the warnings.

Priority  Position Number
1 Out of range [1-9]  Out of range [1-9]
2 Occupancy Wrong number parity (odd/even)
3 Used number

16/19



projectpart2_1155174356.md

The source code segment responsible is as follows:

int

inputIsInvalid =

while (inputIsInvalid) {

#pragma

inputIsInvalid = 0;

printf("Input the position: ");
scanf("%d", &position);

printf("Input the number: ");
scanf("%d", &number);

region Validity check
if (position < 1 || position > 9) {
printf("Position can only be an integer between 1-9!\n");
inputIsInvalid = 1;
} else {
if (gameBoard[(position - 1) / 3][(position - 1) % 3]) {
printf("Position is occupied!\n");
inputIsInvalid = 1;

}

if (number < 1 || number > 9) {
printf("Number can only be an integer between 1-9!\n");
inputIsInvalid = 1;
} else {
if (currentPlayer % 2 != number % 2) {
if (currentPlayer == 1) {
printf("Player 1 can only input odd integers!\n");
} else {
printf("Player 2 can only input even integers!\n");
}
inputIsInvalid = 1;
} else {
if (numberUsed[number - 1]) {
printf("%d is already used!\n", number);
inputIsInvalid = 1;

}

#pragma endregion

}

Notice the warning priorities as described above.

12/2/2022




projectpart2_1155174356.md 12/2/2022

Validity check rationale

The above three demonstrated validity checks use the same rationale.

—>[ User Input Ha_ve —No—>
warnings?

This model allows the program to issue multiple warnings at the same time while being able to determine

Warn user >< Yes

warning priorities.

18719



projectpart2_1155174356.md 12/2/2022

Documentary

This section documents the attempts and workarounds in order to overcome various challenges in this
project. Most of the challenge stems from the Al implementation, as one might be able to intuit.

Writing a full game tree search algorithm is not as hard as | had imagined, but it definitely comes with a lot of
annoying problems especially considering the language | had to work with. | deliberately did not go on to
research algorithms since that would defeat the fun of coming up with my own approach. | have some prior
knowledge about how chess engines work, but apart from their general gist, that was about it.

To add to the challenge, C is not a very versatile language, in the sense that it lacks a lot of useful modern
language features. Nonetheless, | attempted to write the algorithm in C in the beginning, but | quickly got
frustrated by its limitations and verbosity in even simple operations.

| decided to switch to JavaScript (JS) to flesh out the logic first before transpiling back into C, considering | am
exponentially more fluent in JS, not to mention it has significantly more debugging tools available. Despite
this, I still had to hold myself back from using too many modern language features lest the transpilation be
tedious. Along the way, considering the transpilation process, | switched to TypeScript (TS), which is a typed
superset of JS, since | thought it would lessen my confusion at the later stages.

The bulk of the logic is rather easy, and | got to transpiling. | have never transpiled before, but it went a lot
more smoothly than | had imagined, although a lot of simple one-liners in TS can only be expressed in 10+
lines of C code, which killed the elegance quite a bit.

For the actual logic itself, | had considered doing short-circuit evaluations instead of full game tree searches
since they are significantly faster, and it would also provide an easy parameter (depth) to be tweaked as the
difficulty setting. However, it is very difficult to write a good evaluation algorithm, since this game is arguably
more reliant on pure logic than visual patterns like chess does.

Eventually, | decided to go with the full game tree search as | originally intended to. | didn't realise it at the
time, but this decision also opened up a huge optimisation opportunity. Unlike in short-circuit evaluations
where scores span a huge range, scores in full tree searches can only be ¢, 1, or -1. | went ahead and tried to
use this property and store the scores as the smallest addressable type in C, which would be . However, |
quickly found out that even with , the memoisation array would be too large for C. Despite only having 8
bits, is still too large of a type. | was stuck for a very long time until | had the idea to invent a custom
data format. | noticed that | really only needed 2 bits for each board position, and hence birthed the memory
chunk method | introduced above.

When | was stuck, | also went ahead and shortened all the variable types to and since | figured
the program rarely needs to handle large numbers anyway.

As mentioned above, | had intended to implement a difficulty setting from the very beginning, but the
simplified approach | used does not seem to allow for it. While | could change the depth of the search, the
challenge is to also write a good algorithm for it, as | have mentioned above. Alongside this, the maximum
depth of this game is too shallow for any meaningful difficulty setting anyway. Therefore, as a compromise, |
implemented difficulty by mixing random moves among the best moves, and it just so happens to also be the
easiest option to implement. Although | would argue that this is not what true difficulty level would and
should look like, | genuinely cannot be bothered to conceive of a better way.

19/19



